organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium benzoate

Hai Feng,^a* Ya Jian Zhou,^a Bin Tao Xing,^a Yang Guang Qi^a and Zheng Wu^b

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bHangzhou Gallop Biological Products Co., Ltd, Hangzhou 310014, People's Republic of China Correspondence e-mail: fenghai289289@163.com

Received 27 September 2010; accepted 8 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.110; data-to-parameter ratio = 19.6.

In the title compound, $C_{11}H_{17}CINO^+ \cdot C_7H_5O_2^-$, obtained by the reaction of chlorprenaline {or 1-(2-chlorophenyl)-2-[(1methylethyl)amino]ethanol} and benzoic acid, the chlorprenaline is twisted moderately [C-C-C-C] torsion angle = $-76.00 (17)^{\circ}$] compared with related compounds. The molecules as usual form dimers. In the crystal structure, the two components are connected by classical O-H···O and N-H···O hydrogen bonds.

Related literature

For related structures, see: Feld et al. (1981); Feng et al. (2010); Tang et al. (2009a,b).

Experimental

Crystal data $C_{11}H_{17}CINO^+ \cdot C_7H_5O_2^-$

 $M_{\rm r} = 335.82$

Monoclinic, $P2_1/n$ Z = 4a = 7.8343 (3) Å Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ b = 13.1260 (5) Å c = 17.7308 (7) Å T = 296 K $\beta = 94.330 \ (1)^{\circ}$ $0.53 \times 0.48 \times 0.46 \text{ mm}$ $V = 1818.11 (12) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID/ZJUG	17400 measured reflections
diffractometer	4123 independent reflections
Absorption correction: multi-scan	3186 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.023$
$T_{\min} = 0.871, \ T_{\max} = 0.904$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	210 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
4123 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O2$	0.90	1.85	2.7231 (15)	162
O1−H1···O3	0.82	1.93	2.7219 (15)	162
$N1 - H1B \cdots O3^{i}$	0.90	1.88	2.7710 (15)	169

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Key Scientific and Technological Research Project of the Science and Technology Department of Zhejiang Province of China (grant No. 2009 C32078).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2237).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Feld, R., Lehmann, M. S., Muir, K. W. & Speakman, J. C. (1981). Z. Kristallogr. 157 215-231
- Feng, H., Tang, Z., Xie, L.-J. & Xing, B.-T. (2010). Acta Cryst. E66, 0391.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas,
- USA
- Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009b). Acta Cryst. E65, 01670.
- Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009a). Acta Cryst. E65, o1501.

Acta Cryst. (2010). E66, o2910 [doi:10.1107/81600536810040274]

N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium benzoate

H. Feng, Y. J. Zhou, B. T. Xing, Y. G. Qi and Z. Wu

Comment

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang *et al.*, 2009*b*), which was synthesized by oxalic acid and chlorprenaline (Tang *et al.*, 2009*a*). Here using benzoic acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, **I**.

In **I** (Fig. 1), the chlorprenaline molecule and the benzoic acid molecule are linked to each other by the N1—H1A···O2 hydogen bond (2.7231 (15)Å) and the O1—H1···O3 hydogen bond (2.7219 (15)Å) (Fig. 2 & Table 1). The chlorprenaline in **I** are twisted moderately as compared with those of other compounds. The C12—O2 distance of 1.2456 (18)Å is much shorter than the similar distance of 1.2675 (15)Å (Feld *et al.*, 1981). The C1—C6—C7—C8 torsion angle of -76.00 (17)° (104.0 (17)°) is larger than the value of the similar torsion angle of 91.9 (2)° (Tang *et al.*, 2009*a*). The C9—N1 distance of 1.5096 (17)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang *et al.*, 2009*b*), as similar as the value of the similar bond distance of 1.503 (2)Å (Feng *et al.*, 2010).

Classical hydrogen bonds (O—H…O and N—H…O) are found in the cystal structure (Fig. 2 & Table 1) are essential forces in crystal formation.

Experimental

Racemic chlorprenaline was prepared by chlorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. chlorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol–water solution $(1:1 \nu/\nu)$. The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic chlorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (5 ml) and then Benzoic acid (0.3 g, 0.0023 mol) was added. The mixture was dissolved by heating to 323 K where a clear solution resulted. The resulting solution was concentrated at ambient temperature. Colourless crystals of I separated from the solution in about 68% yield after one day.

Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93Å (aromatic), 0.98Å (methine), 0.97Å (methylene), 0.96Å (methyl) 0.82Å (hydroxyl) and N—H = 0.90Å, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C,O,N)$.

Figures

Fig. 1. The asymmetric unit of **I** with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2. The hydrogen bonds (dashed lines) system in I.

N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium benzoate

Crystal data

$C_{11}H_{17}CINO^+ C_7H_5O_2^-$	F(000) = 712
$M_r = 335.82$	$D_{\rm x} = 1.227 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 12983 reflections
a = 7.8343 (3) Å	$\theta = 3.0 - 27.4^{\circ}$
b = 13.1260 (5) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 17.7308 (7) Å	T = 296 K
$\beta = 94.330 (1)^{\circ}$	Chunk, colourless
$V = 1818.11 (12) \text{ Å}^3$	$0.53\times0.48\times0.46~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer	4123 independent reflections
Radiation source: rolling anode	3186 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -9 \rightarrow 10$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -15 \rightarrow 17$
$T_{\min} = 0.871, T_{\max} = 0.904$	<i>l</i> = −22→22
17400 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained

$P(F^2) = 0.110$	$w = 1/[\sigma^2(F_0^2) + (0.0437P)^2 + 0.6461P]$
$WR(F^{-}) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
4123 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
210 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0125 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.45832 (8)	0.73075 (5)	0.69565 (4)	0.0898 (2)
N1	0.27625 (14)	0.59370 (8)	0.48693 (6)	0.0326 (2)
H1A	0.2765	0.5272	0.4744	0.039*
H1B	0.3858	0.6149	0.4912	0.039*
O3	0.40196 (12)	0.31773 (8)	0.50725 (6)	0.0456 (3)
O2	0.23389 (16)	0.40526 (8)	0.42406 (7)	0.0543 (3)
01	0.25272 (15)	0.43338 (8)	0.61142 (6)	0.0497 (3)
H1	0.3143	0.4081	0.5810	0.075*
C13	0.21403 (17)	0.22582 (10)	0.42001 (8)	0.0369 (3)
C8	0.20481 (18)	0.60417 (11)	0.56199 (8)	0.0392 (3)
H8A	0.0844	0.5862	0.5571	0.047*
H8B	0.2135	0.6748	0.5779	0.047*
C9	0.18157 (18)	0.65197 (11)	0.42338 (9)	0.0418 (3)
Н9	0.0642	0.6258	0.4164	0.050*
C1	0.3003 (2)	0.65860 (13)	0.73480 (9)	0.0522 (4)
C14	0.1011 (2)	0.22632 (12)	0.35609 (9)	0.0463 (4)
H14	0.0760	0.2873	0.3309	0.056*
C12	0.28937 (17)	0.32356 (10)	0.45198 (8)	0.0373 (3)
C6	0.23953 (18)	0.57020 (11)	0.69877 (8)	0.0410 (3)
C7	0.29652 (18)	0.53722 (10)	0.62261 (8)	0.0369 (3)
H7	0.4206	0.5458	0.6218	0.044*
C10	0.2707 (2)	0.63197 (14)	0.35160 (9)	0.0545 (4)
H10A	0.2723	0.5600	0.3419	0.082*

H10B	0.3860	0.6571	0.3577	0.082*
H10C	0.2100	0.6661	0.3098	0.082*
C11	0.1747 (3)	0.76461 (13)	0.44186 (11)	0.0617 (5)
H11A	0.1177	0.7740	0.4874	0.093*
H11B	0.1130	0.8000	0.4010	0.093*
H11C	0.2890	0.7911	0.4488	0.093*
C16	0.0598 (3)	0.04706 (15)	0.36633 (13)	0.0800(7)
H16	0.0070	-0.0128	0.3489	0.096*
C18	0.2509 (3)	0.13432 (13)	0.45566 (11)	0.0644 (5)
H18	0.3292	0.1323	0.4978	0.077*
C15	0.0252 (2)	0.13674 (14)	0.32929 (11)	0.0625 (5)
H15	-0.0495	0.1377	0.2860	0.075*
C5	0.1165 (2)	0.51537 (15)	0.73318 (9)	0.0572 (4)
Н5	0.0756	0.4549	0.7113	0.069*
C3	0.1146 (3)	0.63805 (19)	0.83306 (11)	0.0776 (7)
H3	0.0712	0.6611	0.8774	0.093*
C17	0.1724 (4)	0.04543 (14)	0.42930 (14)	0.0901 (8)
H17	0.1961	-0.0157	0.4545	0.108*
C2	0.2388 (3)	0.69251 (17)	0.80124 (10)	0.0688 (6)
H2	0.2816	0.7519	0.8241	0.083*
C4	0.0528 (3)	0.5488 (2)	0.79991 (11)	0.0783 (6)
H4	-0.0309	0.5113	0.8221	0.094*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0863 (4)	0.0823 (4)	0.1027 (4)	-0.0357 (3)	0.0192 (3)	-0.0458 (3)
N1	0.0330 (5)	0.0275 (5)	0.0370 (6)	-0.0016 (4)	0.0007 (4)	-0.0014 (4)
03	0.0384 (5)	0.0479 (6)	0.0497 (6)	-0.0055 (5)	-0.0019 (4)	-0.0129 (5)
O2	0.0723 (8)	0.0301 (5)	0.0588 (7)	-0.0024 (5)	-0.0053 (6)	-0.0076 (5)
01	0.0659 (7)	0.0344 (5)	0.0512 (6)	-0.0035 (5)	0.0199 (5)	-0.0064 (5)
C13	0.0375 (7)	0.0323 (7)	0.0412 (7)	-0.0023 (6)	0.0046 (6)	-0.0077 (6)
C8	0.0381 (7)	0.0382 (7)	0.0416 (8)	0.0030 (6)	0.0053 (6)	-0.0045 (6)
C9	0.0370 (7)	0.0397 (8)	0.0473 (8)	-0.0004 (6)	-0.0054 (6)	0.0072 (6)
C1	0.0531 (9)	0.0565 (10)	0.0458 (9)	0.0081 (8)	-0.0039 (7)	-0.0146 (7)
C14	0.0491 (8)	0.0384 (8)	0.0502 (9)	0.0006 (7)	-0.0040 (7)	-0.0073 (6)
C12	0.0355 (7)	0.0351 (7)	0.0419 (7)	-0.0045 (6)	0.0074 (6)	-0.0090 (6)
C6	0.0425 (7)	0.0454 (8)	0.0348 (7)	0.0094 (6)	0.0005 (6)	-0.0031 (6)
C7	0.0381 (7)	0.0342 (7)	0.0386 (7)	0.0006 (6)	0.0050 (6)	-0.0052 (5)
C10	0.0610 (10)	0.0605 (10)	0.0410 (8)	0.0011 (8)	-0.0027 (7)	0.0093 (7)
C11	0.0728 (12)	0.0393 (9)	0.0729 (12)	0.0131 (8)	0.0032 (9)	0.0116 (8)
C16	0.1048 (17)	0.0444 (10)	0.0876 (15)	-0.0270 (11)	-0.0145 (13)	-0.0166 (10)
C18	0.0916 (14)	0.0393 (8)	0.0581 (11)	-0.0045 (9)	-0.0216 (10)	-0.0008 (8)
C15	0.0630 (11)	0.0572 (11)	0.0642 (11)	-0.0086 (9)	-0.0147 (9)	-0.0186 (9)
C5	0.0658 (11)	0.0623 (11)	0.0453 (9)	0.0028 (9)	0.0154 (8)	0.0000 (8)
C3	0.0973 (16)	0.1001 (17)	0.0361 (9)	0.0424 (14)	0.0090 (10)	-0.0085 (10)
C17	0.144 (2)	0.0329 (9)	0.0878 (16)	-0.0147 (11)	-0.0269 (15)	0.0046 (9)
C2	0.0803 (13)	0.0757 (13)	0.0483 (10)	0.0247 (11)	-0.0089 (9)	-0.0237 (9)

C4	0.0884 (15)	0.0955 (17)	0.0549 (11)	0.0159 (13)	0.0311 (11)	0.0092 (11)
Geometric parai	neters (Å. °)					
		1 7429 (10)	<u>C6</u>	~ 7	1.5	160 (10)
CII = CI		1.7458 (19)	C6—(1.5	169 (19)
$NI = C\delta$		1.4664 (17)	C/—		0.9	500 (00
NI-C9		1.5096 (17)	C10-	-HIUA	0.9	600
NI—HIA		0.9000	C10-	-H10B	0.9	500
NI—HIB		0.9000	C10-	-H10C	0.9	600
03-012		1.2704 (17)	C11-	-HIIA	0.9	500
02-012		1.2456 (18)	C11-	-HIIB	0.9	500
01-07		1.4158 (16)	CII-	-HIIC	0.9	500
OI—HI		0.8200	C16-	-C15	1.3	65 (3)
CI3—CI8		1.378 (2)	C16-	-C17	1.3	/0 (3)
C13—C14		1.384 (2)	C16-	-H16	0.9	300
C13—C12		1.5050 (18)	C18-	-C17	1.3	84 (3)
C8—C7		1.526 (2)	C18—	-H18	0.9	300
С8—Н8А		0.9700	C15—	-H15	0.9	300
C8—H8B		0.9700	C5—0	C4	1.3	90 (3)
C9—C11		1.516 (2)	C5—]	H5	0.9	300
C9—C10		1.520 (2)	C3—0	C2	1.3	63 (3)
С9—Н9		0.9800	C3—0	C4	1.3	82 (3)
C1—C2		1.380 (2)	C3—1	H3	0.9	300
C1—C6		1.391 (2)	C17—	-H17	0.9	300
C14—C15		1.386 (2)	C2—]	H2	0.9	300
C14—H14		0.9300	C4—]	H4	0.9	300
C6—C5		1.381 (2)				
C8—N1—C9		115.08 (11)	C6—(С7—Н7	109	9.8
C8—N1—H1A		108.5	C8—(С7—Н7	109	9.8
C9—N1—H1A		108.5	С9—(C10—H10A	109	9.5
C8—N1—H1B		108.5	С9—(С10—Н10В	109	0.5
C9—N1—H1B		108.5	H10A	—С10—Н10В	109	9.5
H1A—N1—H1B		107.5	С9—(С10—Н10С	109	9.5
C7—O1—H1		109.5	H10A	—С10—Н10С	109	0.5
C18—C13—C14		118.61 (14)	H10B		109	0.5
C18—C13—C12		120.50 (13)	С9—(C11—H11A	109	0.5
C14—C13—C12		120.84 (13)	С9—(С11—Н11В	109	0.5
N1—C8—C7		112.82 (11)	H11A	—C11—H11B	109	0.5
N1—C8—H8A		109.0	С9—(С11—Н11С	109	0.5
С7—С8—Н8А		109.0	H11A	—С11—Н11С	109	0.5
N1—C8—H8B		109.0	H11B	—C11—H11C	109	0.5
С7—С8—Н8В		109.0	C15—	-C16C17	119	.85 (16)
H8A—C8—H8B		107.8	C15—	-C16—H16	120	0.1
N1-C9-C11		110.87 (13)	C17—	-C16—H16	120	0.1
N1-C9-C10		107.86 (12)	C13—	-C18C17	120	0.49 (17)
C11—C9—C10		112.06 (14)	C13—	-C18—H18	119	.8
N1—C9—H9		108.7	C17—	-C18—H18	119	.8
С11—С9—Н9		108.7	C16—	-C15-C14	120	0.15 (17)
С10—С9—Н9		108.7	C16-	-C15—H15	119	.9

C2—C1—C6	122.12 (18)	C14—C15—H15	119.9
C2—C1—Cl1	117.95 (15)	C6—C5—C4	121.29 (19)
C6—C1—Cl1	119.92 (12)	C6—C5—H5	119.4
C13—C14—C15	120.55 (15)	C4—C5—H5	119.4
C13—C14—H14	119.7	C2—C3—C4	120.44 (18)
C15—C14—H14	119.7	С2—С3—Н3	119.8
O2—C12—O3	124.03 (13)	С4—С3—Н3	119.8
O2—C12—C13	117.97 (12)	C16—C17—C18	120.32 (19)
O3—C12—C13	117.97 (13)	C16—C17—H17	119.8
C5—C6—C1	117.24 (15)	C18—C17—H17	119.8
C5—C6—C7	120.44 (14)	C3—C2—C1	119.36 (19)
C1—C6—C7	122.23 (14)	C3—C2—H2	120.3
O1—C7—C6	108.36 (12)	C1—C2—H2	120.3
O1—C7—C8	111.07 (12)	C3—C4—C5	119.5 (2)
C6—C7—C8	107.95 (11)	C3—C4—H4	120.2
O1—C7—H7	109.8	С5—С4—Н4	120.2
C9—N1—C8—C7	175.43 (11)	C1—C6—C7—C8	-76.00 (17)
C8—N1—C9—C11	57.38 (16)	N1-C8-C7-O1	-73.09 (15)
C8—N1—C9—C10	-179.59 (12)	N1—C8—C7—C6	168.25 (11)
C18—C13—C14—C15	0.9 (3)	C14—C13—C18—C17	-2.0 (3)
C12-C13-C14-C15	-176.53 (15)	C12-C13-C18-C17	175.4 (2)
C18—C13—C12—O2	-170.12 (16)	C17—C16—C15—C14	-1.3 (4)
C14—C13—C12—O2	7.3 (2)	C13—C14—C15—C16	0.7 (3)
C18—C13—C12—O3	7.8 (2)	C1—C6—C5—C4	1.8 (3)
C14—C13—C12—O3	-174.79 (13)	C7—C6—C5—C4	-174.81 (17)
C2-C1-C6-C5	-1.5 (2)	C15-C16-C17-C18	0.2 (4)
Cl1—C1—C6—C5	178.90 (13)	C13-C18-C17-C16	1.5 (4)
C2-C1-C6-C7	175.02 (15)	C4—C3—C2—C1	1.1 (3)
Cl1—C1—C6—C7	-4.6 (2)	C6—C1—C2—C3	0.1 (3)
C5—C6—C7—O1	-19.97 (19)	Cl1—C1—C2—C3	179.68 (15)
C1—C6—C7—O1	163.62 (14)	C2—C3—C4—C5	-0.8 (3)
C5—C6—C7—C8	100.41 (16)	C6—C5—C4—C3	-0.7 (3)
Hydrogen-bond geometry (Å, °)			
D Hund	ת ת	IL. A D. A	DIL

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O2	0.90	1.85	2.7231 (15)	162
O1—H1…O3	0.82	1.93	2.7219 (15)	162
N1—H1B···O3 ⁱ	0.90	1.88	2.7710 (15)	169
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1

